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COMMENT 

Comment on ‘Supercritical effects and the delta potential’ 
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i Institute of Computer Sciences, Kyoto Sangyo University, Kyoto 603, Japan 

Received 4 September 1990 

Abstract. Recently Loewe and Sanhueza examined supercritical effects caused by a S 
potential acting on a Dirac particle in one dimension and also by a 6-shell potential in 
three dimensions. Based on the observation that supercritical effects are absent for the S 
potential, they suggested that the effects depend on the spatial extension of the potential. 
We point out that the effects are absent for a class of non-local separable potentials in one 
dimension. The ranges of the potentials can be chosen arbitrarily; the S potential is a 
special case. 

In a recent paper entitled ‘Supercritical effects and the S potential’ Loewe and Sanhueza 
[ 11 (referred to as LS below) examined the possibility of supercritical effects induced 
when the Dirac sea is perturbed by an  external potential. These supercritical effects 
occur when the potential becomes so strong that a bound Dirac particle dives into the 
negative energy sea. LS examined two models, one in one dimension and  the other in 
three dimensions. In the one-dimensional model they assumed an  attractive &function 
potential 

V ( x )  = -gS(x) (1) 
where g is the strength parameter which corresponds to the a of LS. In the three- 
dimensional model they assumed a &shell potential 

V (  r )  = -gS( r - ro) ( 2 )  
where ro is the shell radius. We use natural units ( c  = h = 1). For the Dirac matrices 
we use the usual ones as LS did. In both models V is taken as the zeroth component 
of a Lorentz vector. 

LS observed that the energy eigenvalue E of the positive parity bound state of a 
Dirac particle in one dimension does not reach -rn for any finite value of g, and hence 
no supercritical effects occur. However, the E of the three-dimensional model does 
reach -rn for a finite value of g. In their conclusions LS state that ‘it is clear that these 
supercritical effects depend on the spatial extension of the potential’. By this statement 
they seem to imply that the zero-range nature of potential (1) is responsible for the 
absence of supercritical effects. 

The purpose of this comment is to point out that, contrary to LS’S statement quoted 
above, the spatial extension of the potential has no relevance to the absence of 
supercritical effects. To this end we examine a class of non-local separable interactions 
in one dimension, of which the S potential is a special case, and  show that supercritical 
effects d o  not occur, irrespective of the range of the separable potential. We also discuss 
the three-dimensional Dirac equation with a class of non-local separable potentials, 
of which the &shell potential is a special case. 
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Let us start with the one-dimensional case. There is an arbitrariness in defining the 
6 potential in the one-dimensional Dirac equation [2,3]. The Dirac equation can be 
integrated by using 

5 dx 8(x)+(x)  = [ $ ( O + )  + $(0-)1/2 (3) 

where $(x)  is the wavefunction and O+ stands for 0 plus positive infinitesimal. Then 
the eigenvalue of the positive parity state is given by [4] 

E = m ( s ) ,  (4) 

There is another bound state, with odd parity, and its energy is given by the negative 
of the E of (4). Throughout this comment, however, we focus on the positive parity 
bound state of the lowest energy. The E of (4) becomes - m only in the limit of g + CO. 

The potential V of (1) together with ( 3 )  can be regarded as a special case of the 
non-local separable potential defined by 

r 

v+ = -gu(x) I-, dx’ u(x’)*(x‘) ( 5 )  

where u(x) = U(-x). The V of (1) is obtained by u ( x ) +  S(x). The Dirac equation with 
potential ( 5 )  has been examined in [3]. Note that h of [3] corresponds to our g, while 
the g (for the Lorentz scalar potential) of [3] is set to be zero. For the V of (5) one obtains 

E = m(4-g29*) / (4+g24*)  (6) 

where 

and K = (m’- E*)’ ’* .  It is understood that the integral 2 is well defined and finite. 
Again E + -m only if g + W. Actually (6) is still an involved equation for E because 
4 depends on E through K .  If u (x)+S(x) ,  then 4 - 1 .  

The solution of the one-dimensional Dirac equation for the square-well potential 

has been examined in detail, for example, by Greiner er a1 [ 5 ] .  If one keeps ro fixed 
and increases the depth 0, the energy eigenvalue E certainly reaches -m at a finite 
value of D, hence supercritical effects occur. I f  one takes the ‘&function limit’ of the 
square-well potential, i.e. if one lets ro+O and D + m ,  with the condition 

2r0D = g ( 9 )  

E = rn cos g .  (10) 
Obviously E + -m at g = T which is finite. Hence supercritical effects occur for this 
version of the S potential. This is a counterexample of what LS hinted, i.e. these 
supercritical effects would not occur if the potential has no spatial extension. The 
results of the two versions of the 8-function potential, e.g. (4) and ( lo) ,  are related to 
each other by the substitution 

one obtains 

g + 2 tan(g/2).  (11) 
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For the second version of the 8 potential, (3 )  does not hold. This intriguing aspect 
has been discussed in [2,3]; see also [6]. 

The Dirac wavefunction in one dimension has two components. Let the upper and 
lower components be and cL2, respectively. For the positive parity state which we 
are examining, G I  and rC/r  are even and odd functions of x, respectively. Note that both 
potentials defined by (1) and (5)  do not act on $>; this is because G2 is an odd function 
of x. On the other hand the square-well potential ( 8 )  acts on One may suspect that 
this feature, i.e. whether or not the potential acts on G2,  is crucial to the absence of 
supercritical effects. This is not the case, however. In order to see this let us consider 
the following extension of the non-local potential 

dx‘ u2(x’)$(xf)] (12) 

where u l ( x ) =  ul(-x) and u2(x)= --u2(-x). Note that the V of (12) acts on the odd 
function part of 9 through u 2 .  The Dirac equation with this interaction can be solved 
in a way similar to [3]. The bound-state energy E is determined by 

X X 

V$ = -g[ uI(x) 5, dx’ uI(x’)rC/(x’)+ u 2 ( x )  L 

then 911 = In this special case, (13) can be reduced to 

It is not difficult to see from (16) that, in order for E to reach -m, g has to become 
infinite. In the general case in which 911 # 922,  the corresponding expression for E 
becomes complicated, but again one finds that g + CO for E + -m. The absence of 
supercritical effects (for a finite value of g )  is characteristic of interaction (12); the 
spatial extension of the potential is irrelevant in this respect. Let us add that, in its 
zero-range limit, the square-well potential does not act on (c12. Nevertheless, supercritical 
effects occur as noted above. 

Before ending our discussion of the one-dimensional case, let us mention the 
one-dimensional version of the 8-shell potential, i.e. the V of (2) used in one dimension 
with the understanding that r = 1x1 or, more explicitly, 

V(x) = -g[ 8 (  x - ro) + 8 (  x + ro)]. (17) 

This 8-shell potential has a finite spatial extension. If the Dirac equation is integrated 
by using (3), one again finds that E + -m only if g + CO. Although it has two terms, 
potential (17) can be regarded as a special case of potential (12); this can be conveniently 
done by using partial waves in one dimension [7]. Hence the absence of supercritical 
effects is not surprising. 

Let us now turn to the three-dimensional case. For the three-dimensional model 
with the 8-shell potential (2) ,  LS solved the Dirac equation and found that the 
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bound-state energy E reaches -m for a finite value of g ;  hence supercritical effects 
occur. The 8-shell potential ( 2 )  can be rewritten in the form of 

c 

This V acts on all partial waves equally. (The potential ( 1 7 )  can be regarded as a 
one-dimensional version of (18).) For the usual ground state with quantum number 
j = 4, positive parity, the upper and lower components of the Dirac wavefunction are 
associated with the orbital angular momentum I = 0 and 1, respectively. The potential 
(18) acts on the lower component as well as on the upper component. 

Let us make two brief comments regarding the &shell potential. 
I .  The potential (18) can be generalized by replacing 8 (  r - r,,) with an arbitrary 

function U,( r ) ;  this is a three-dimensional version of potential (12). For such a potential 
the Dirac equation can be solved essentially in the same way as for the one-dimensional 
case by means of the Green function in coordinate space [ 3 ] .  For an alternative method 
of solving the Dirac equation with a separable potential, see [8]. Regarding supercritical 
effects, such generalization does not seem to exhibit anything qualitatively different 
from those of the 8-shell potential. Therefore we will not go into details of the 
generalization. 

11. Earlier we mentioned the arbitrariness in the definition of the one-dimensional 
8-function potential [ 2 , 3 ] .  There is an exactly similar arbitrariness regarding the 
three-dimensional &shell potential. In replacing the potential ( 2 )  with the separable 
potential (18), it was assumed that ( 3 )  holds for the r-integration. Another interpretation 
of (2) is obtained by starting with a shell of a finite width, say, in the form of a square 
well; V( r )  = - D  for Ir - ro( < E and V (  r )  = 0 for Ir - ro/ > E .  The Dirac equation can be 
solved without any ambiguity. One then takes the zero-range limit E -, 0, keeping 
 ED = g fixed. It turns out that the results for this second version of the &shell potential 
can be obtained from those of the first version [with ( 3 ) ]  by the same substitution (1 1) 
as for the two versions of the one-dimensional &function potential. This substitution 
holds for any partial waves. 

Finally let us add that the 8-shell potential in two dimensions is more like its three- 
(rather than one-) dimensional counterpart; see e.g. [ 9 ] .  When g is increased starting 
from g = 0, the eigenvalue E remains as E = m (i.e. no bound state) for g less than a 
certain value, and E reaches -m for another finite value of g, hence supercritical 
effects occur. 
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